81 research outputs found

    Automatic Construction of Parallel Portfolios via Explicit Instance Grouping

    Full text link
    Simultaneously utilizing several complementary solvers is a simple yet effective strategy for solving computationally hard problems. However, manually building such solver portfolios typically requires considerable domain knowledge and plenty of human effort. As an alternative, automatic construction of parallel portfolios (ACPP) aims at automatically building effective parallel portfolios based on a given problem instance set and a given rich design space. One promising way to solve the ACPP problem is to explicitly group the instances into different subsets and promote a component solver to handle each of them.This paper investigates solving ACPP from this perspective, and especially studies how to obtain a good instance grouping.The experimental results showed that the parallel portfolios constructed by the proposed method could achieve consistently superior performances to the ones constructed by the state-of-the-art ACPP methods,and could even rival sophisticated hand-designed parallel solvers

    How Good Is Neural Combinatorial Optimization?

    Full text link
    Traditional solvers for tackling combinatorial optimization (CO) problems are usually designed by human experts. Recently, there has been a surge of interest in utilizing Deep Learning, especially Deep Reinforcement Learning, to automatically learn effective solvers for CO. The resultant new paradigm is termed Neural Combinatorial Optimization (NCO). However, the advantages and disadvantages of NCO over other approaches have not been well studied empirically or theoretically. In this work, we present a comprehensive comparative study of NCO solvers and alternative solvers. Specifically, taking the Traveling Salesman Problem as the testbed problem, we assess the performance of the solvers in terms of five aspects, i.e., effectiveness, efficiency, stability, scalability and generalization ability. Our results show that in general the solvers learned by NCO approaches still fall short of traditional solvers in nearly all these aspects. A potential benefit of the former would be their superior time and energy efficiency on small-size problem instances when sufficient training instances are available. We hope this work would help better understand the strengths and weakness of NCO, and provide a comprehensive evaluation protocol for further benchmarking NCO approaches against other approaches

    On Performance Estimation in Automatic Algorithm Configuration

    Full text link
    Over the last decade, research on automated parameter tuning, often referred to as automatic algorithm configuration (AAC), has made significant progress. Although the usefulness of such tools has been widely recognized in real world applications, the theoretical foundations of AAC are still very weak. This paper addresses this gap by studying the performance estimation problem in AAC. More specifically, this paper first proves the universal best performance estimator in a practical setting, and then establishes theoretical bounds on the estimation error, i.e., the difference between the training performance and the true performance for a parameter configuration, considering finite and infinite configuration spaces respectively. These findings were verified in extensive experiments conducted on four algorithm configuration scenarios involving different problem domains. Moreover, insights for enhancing existing AAC methods are also identified.Comment: accepted by AAAI 202

    Enhancing Graph Collaborative Filtering via Uniformly Co-Clustered Intent Modeling

    Full text link
    Graph-based collaborative filtering has emerged as a powerful paradigm for delivering personalized recommendations. Despite their demonstrated effectiveness, these methods often neglect the underlying intents of users, which constitute a pivotal facet of comprehensive user interests. Consequently, a series of approaches have arisen to tackle this limitation by introducing independent intent representations. However, these approaches fail to capture the intricate relationships between intents of different users and the compatibility between user intents and item properties. To remedy the above issues, we propose a novel method, named uniformly co-clustered intent modeling. Specifically, we devise a uniformly contrastive intent modeling module to bring together the embeddings of users with similar intents and items with similar properties. This module aims to model the nuanced relations between intents of different users and properties of different items, especially those unreachable to each other on the user-item graph. To model the compatibility between user intents and item properties, we design the user-item co-clustering module, maximizing the mutual information of co-clusters of users and items. This approach is substantiated through theoretical validation, establishing its efficacy in modeling compatibility to enhance the mutual information between user and item representations. Comprehensive experiments on various real-world datasets verify the effectiveness of the proposed framework.Comment: In submissio

    Multi-Domain Learning From Insufficient Annotations

    Full text link
    Multi-domain learning (MDL) refers to simultaneously constructing a model or a set of models on datasets collected from different domains. Conventional approaches emphasize domain-shared information extraction and domain-private information preservation, following the shared-private framework (SP models), which offers significant advantages over single-domain learning. However, the limited availability of annotated data in each domain considerably hinders the effectiveness of conventional supervised MDL approaches in real-world applications. In this paper, we introduce a novel method called multi-domain contrastive learning (MDCL) to alleviate the impact of insufficient annotations by capturing both semantic and structural information from both labeled and unlabeled data.Specifically, MDCL comprises two modules: inter-domain semantic alignment and intra-domain contrast. The former aims to align annotated instances of the same semantic category from distinct domains within a shared hidden space, while the latter focuses on learning a cluster structure of unlabeled instances in a private hidden space for each domain. MDCL is readily compatible with many SP models, requiring no additional model parameters and allowing for end-to-end training. Experimental results across five textual and image multi-domain datasets demonstrate that MDCL brings noticeable improvement over various SP models.Furthermore, MDCL can further be employed in multi-domain active learning (MDAL) to achieve a superior initialization, eventually leading to better overall performance.Comment: This paper has been accepted to ECAI-2

    Large Language Models can be Guided to Evade AI-Generated Text Detection

    Full text link
    Large Language Models (LLMs) have demonstrated exceptional performance in a variety of tasks, including essay writing and question answering. However, it is crucial to address the potential misuse of these models, which can lead to detrimental outcomes such as plagiarism and spamming. Recently, several detectors have been proposed, including fine-tuned classifiers and various statistical methods. In this study, we reveal that with the aid of carefully crafted prompts, LLMs can effectively evade these detection systems. We propose a novel Substitution-based In-Context example Optimization method (SICO) to automatically generate such prompts. On three real-world tasks where LLMs can be misused, SICO successfully enables ChatGPT to evade six existing detectors, causing a significant 0.54 AUC drop on average. Surprisingly, in most cases these detectors perform even worse than random classifiers. These results firmly reveal the vulnerability of existing detectors. Finally, the strong performance of SICO suggests itself as a reliable evaluation protocol for any new detector in this field
    • …
    corecore